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ABSTRACT

Introduction: In light of the widespread use of non-prescribed and prescribed cannabidiol, the use of
cannabidiol with other medications is likely, and this may result in drug interactions.

Areas covered: We aimed to ascertain if clinical guidance could be provided on the dose range at
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which cannabidiol drug interactions are likely to occur with concurrently prescribed medicines. ﬁ%fﬁ'ﬁnnabis-
Literature searches were conducted in Embase, MEDLINE, and PubMed from database inception to cannabidiol: '

January 2022 using Emtree and MeSH terms. Reference list screening yielded further studies. Using
currently available data, likely drug interactions of which prescribers of cannabidiol need to be aware, at
the doses likely to cause clinically significant interactions, and drug dosing changes that may be needed
are highlighted.

Expert opinion: We have provided an overview of evidence-based pharmacokinetic predictions and
general guidance about the dose range at which clinically relevant cannabidiol drug interactions are
likely. For an individual patient, there are inherent limitations in providing clinical guidance due to gaps
in specific drug dose-response data and knowledge of individual pharmacokinetic profiles, including
different co-morbidities, and concurrent medicines. Clinician awareness of cannabinoid pharmacology,
along with clinical and therapeutic drug monitoring, are current best practice approaches to manage
cannabinoid drug interactions.

pharmacokinetics; drug
interactions; review

1. Introduction

'

‘cannabidiol,’ ‘drug interaction(s)’, and ‘pharmacokinetics.’
The search was limited to articles published in English lan-
guage. A focus on the cannabinoid cannabidiol was a key
inclusion criterion. Literature based on cannabinoids other
than cannabidiol were excluded. Reference lists of articles
retrieved were manually screened for additional studies.
Following deduplication of retrieved articles in EndNote, all
articles were independently screened by two authors and
a consensus on included articles was reached.

Internationally, cannabidiol is becoming more readily available
to consumers via prescription and/or in the absence of
a prescription. The wide range of indications for which use
of cannabidiol is promoted means that patients on cannabi-
diol are likely to be coadministering other medicines. With
underpinning knowledge on drug-drug interactions usually
provided through early phase clinical studies missing, data
on clinically relevant interactions to inform prescribers and
consumers is lacking. This narrative review aims to assist clin-
icians by providing an overview of the pharmacokinetics of
cannabidiol, potential mechanisms of drug—drug interactions
and a summary of data on drug-drug interactions from
in vitro studies, animal studies, real-world case reports and
clinical studies. Although general awareness of drug interac-
tions is available in regulatory guidance for registered canna-
binoids, the manuscript helps guide prescribers to select doses
of cannabinoids where likely drug interactions can be

3. Results
3.1. Pharmacokinetics of clinical doses

3.1.1. Absorption

Cannabidiol has low and variable oral bioavailability, due pre-
dominantly to its low aqueous solubility and extensive first-
pass metabolism [1]. A model-based analysis of the oral can-
nabidiol dose-exposure relationship and bioavailability con-

managed. cluded that systemic exposure did not increase proportionally
with oral doses of 750 mg and above, and bioavailability,
2. Methods estimated to be 6.5% at 3000 mg, decreased with increasing

dose [2]. Administering oral cannabidiol with a high-fat meal

2.1. Literature search increases the peak plasma cannabidiol concentration (Cmax)

Literature searches from database inception to January 2022
were conducted in Embase, MEDLINE, and PubMed databases,
using Emtree and MeSH terms. Search terms included

and area under the plasma cannabidiol concentration-time
curve (AUQ). In subjects receiving a single oral 750 mg canna-
bidiol dose in the fasted state, and with a high-fat meal, the
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Article highlights

o The rapid uptake of non-prescribed and prescribed cannabidiol use
increases the likelihood of potential interactions with other
medications.

e The article provides an overview of cannabidiol drug interaction
literature.

e The concept of a dose-threshold for cannabidiol drug interactions is
explored.

¢ Clinical guidance for prescribers on cannabidiol drug interactions is
provided, including quick reference summary tables.

e Gaps in existing knowledge and research are highlighted.

geometric mean Cmax increased from 187 to 1050 ng/mL, and
AUC (... was 3.8 times higher with food [3]. Administration of
a medium-range dose of 300 mg (or 200 mg in one subject)
with a high fat/calorie meal increased the Cmax by an average
of 14-fold (from 9 to 126 ng/mL), and there was a fourfold
increase in AUC .. [4].

The formulation of the oral cannabidiol product also sig-
nificantly affects plasma cannabidiol concentration and AUC.
In a study where 16 subjects received a single 25 mg oral dose
of cannabidiol of a self-emulsifying drug delivery system
(SEDDS) or oil formulation in a fasted state, the mean Cmax
observed was 13.53 ng/mL with the SEDDS formulation com-
pared to 3.05 ng/mL for the oil formulation. The AUC (0-8 h)
for the SEDDs formulation was 2.85 times higher than the oil
formulation [1].

Following inhalation or smoking of cannabidiol, peak
plasma cannabidiol concentrations occur within minutes.
Smoked cannabidiol was observed to have an average bioa-
vailability of 31%, which is higher than that observed for oral
cannabidiol [5]. A study comparing the pharmacokinetics of
2.1 mg inhaled cannabidiol and 50 mg oral cannabidiol
reported a mean Cmax of 18.78 ng/mL for inhaled and
6.3 ng/mL for oral cannabidiol. In a study investigating canna-
bidiol delivered via a dry powder inhaler, the dose-adjusted
mean AUC for inhaled cannabidiol was approximately nine
times higher than oral cannabidiol [6].

3.1.2. Distribution

Due to its high lipophilicity, cannabidiol is extensively distrib-
uted with rapid distribution into the brain, adipose tissue, and
other organs. With chronic administration, cannabidiol may
accumulate in adipose tissue and may slowly release from
this depot [5,7]. Cannabidiol is >80% protein-bound, and simi-
lar protein binding was observed in patients with normal and
impaired renal function [8]. A trend toward increased fraction
unbound in the presence of hepatic impairment was
observed, although authors noted difficulties in assaying the
unbound cannabidiol fraction [9].

3.1.3. Elimination

Following oral administration, cannabidiol undergoes extensive
first-pass metabolism. Cannabidiol is primarily metabolized by
CYP2C19 and CYP3A4. Other CYP enzymes, including CYP2C9,
CYP2D6 may also play a role [10]. Cannabidiol is also subject to
Uridine 5'-diphospho (UDP)-glucuronosyltransferase  (UGT)

dependent glucuronidation by UGT enzymes and s
a substrate of UGT1A7, UGT1A9, and UGT2B7 enzymes [11].

When deuterium-labeled cannabidiol was administered
intravenously (IV), a large proportion of cannabidiol was
observed to be excreted unchanged in the feces.
A suggested mechanism for transport into the bile is by
canalicular efflux transporters such as P-glycoprotein (P-gp),
breast cancer resistance protein (BCRP) and/or multi-drug
resistance associated protein 2 (MRP2) [12].

Pharmacokinetic studies using oral formulations report
clearance (CL) values as CL/F, where F is the bioavailability.
Since cannabidiol bioavailability is low, CL/F values reported
are large. Using an absolute bioavailability of 6% for oral
cannabidiol, the estimated CL of cannabidiol is likely to be
around 67 L/h. Perucca and Bialer [13] observed that this
estimate is close to that reported for deuterium labeled IV
cannabidiol. Based on this, cannabidiol may behave as
a high clearance drug and this has implications when predict-
ing the magnitude of drug-drug interactions [13].

Since hepatic metabolism plays an important role in the
elimination of cannabidiol, hepatic impairment is likely to
influence the plasma cannabidiol concentrations. In a phase
| study, where a single oral dose of 200 mg cannabidiol was
administered to subjects with normal and different degrees of
hepatic impairment, cannabidiol AUC was slightly higher with
mild impairment, and clinically relevant increases were
observed with moderate and severe hepatic impairment. The
mean geometric Cmax in subjects with normal hepatic func-
tion and moderate and severe hepatic impairment was
148 ng/mL, 354 ng/mL and 381 ng/mL, respectively [9].

Impairment of renal function did not produce significant
changes in Cmax or AUC following a single oral 200 mg
dose [8].

3.2. Mechanisms of pharmacokinetic drug-drug
interactions

Pharmacokinetic drug-drug interactions may occur in the
absorption, distribution and elimination stages and result in
increased or decreased plasma drug concentrations. When
cannabidiol is co-administered with another drug, cannabidiol
may affect the pharmacokinetics of the other drug and the
pharmacokinetics of cannabidiol may also be affected by a co-
administered drug.

A common mechanism of drug-drug interaction is the
induction or inhibition of enzymes involved in drug metabo-
lism. CYP450 enzymes are involved in the metabolism of many
drugs, including cannabidiol. UGT enzymes also represent an
important pathway of metabolism. Genetic polymorphisms
occur in CYP450 enzymes, including CYP3A4, CYP2D6,
CYP2C9 and CYP2C19, which have been reported to be
involved in cannabidiol metabolism. Patients may be ‘poor
metabolizers’ and others ‘ultra metabolizers’ and genetic var-
iation can markedly alter the severity of drug-drug interac-
tions [14,15]. An in vitro study recently observed that the
formation of the active metabolite 7-hydroxy-cannabidiol
(7-OH-CBD) was positively correlated with CYP2C19 activity
but not associated with CYP2C19 genotype [16].



Drug transporters present in the liver, kidney, blood-brain
barrier and intestine are involved in the absorption, distribu-
tion and elimination of some drugs. Efflux transporters include
P-gp, MRP2, and BCRP. Genetic polymorphism and the inhibi-
tion or induction of these transporters by one drug may result
in changes in plasma drug concentrations of another
drug [14].

3.3. In vitro studies and drug interactions

3.3.1. CYP enzyme interactions

Preliminary investigation of the effect of a drug on CYP450
enzymes involves in vitro studies with human liver micro-
somes (HLMs), microsomes from recombinant CYP-expression
systems, or hepatocytes. Estimates of the inhibitory constant
(Ki) and the drug concentration reducing the activity of an
enzyme by a half (ICso) are obtained. The smaller the Ki value,
the greater the binding affinity of the drug for the enzyme and
the lower the drug concentration required to inhibit enzyme
activity.

In vitro studies have reported cannabidiol inhibition of
many CYP450 enzymes. A summary of Ki values from these
in vitro studies performed in either HLMs or recombinant
enzymes (R) is shown below (see Table 1) (Drugs used as the
substrate are indicated where there are multiple listings for an
enzyme).

Cannabidiol was observed to be a competitive inhibitor of
CYP1 enzymes (CYP1A1, CYP1A2 and CYP1B1) and also pro-
duced potent mechanism-based inhibition of CYP1, particu-
larly CYPTA1 [17]. Potent competitive inhibition of CYP2D6
with 1Csq values ranging from 4.01 to 6.52 uM was observed
for cannabidiol [19]. While differences were seen depending
on the substrate and enzyme source used, cannabidiol was
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also observed to be a potent inhibitor of CYP2C9 and to be
a direct inhibitor [20].

Cannabidiol was reported to be a competitive inhibitor of
CYP3A enzymes, in particular CYP3A4 and CYP3A5 in an
in vitro study using recombinant enzymes and HLMs. ICsg
values reported for CYP3A4 and CYP3A5 were 11.7 uM and
1.65 UM, respectively, in recombinant enzymes and 9.18 uM in
HLMs. Mixed inhibition was observed for CYP3A7 with an ICsq
value of 24.7 uM [21] and for CYP2C19 [22].

An in vitro study investigated the inhibitory effect of sev-
eral cannabinoids on CYP2D6, CYP2C19, CYP2C9, CYP2B6,
CYP3A4, and CYP1A2. An inhibitory effect by cannabidiol on
CYP2B6 metabolism of the substrate drug bupropion was
observed with a mean apparent ICso value of 6.2 uM.
Cannabidiol potently inhibited CYP2C19 metabolism of (S)-
mephenytoin (ICso value = 2.1 uM) and CYP2C9 metabolism
of tolbutamide was also inhibited by cannabidiol (ICs
value = 2.5 uM) [23].

Using in vitro data, one approach to predict the likelihood
of a drug—drug interaction is determining the ratio of the drug
concentration at the active site of the enzyme [II/Ki. [I] is the
mean steady-state maximum plasma concentration (Cssmax)
value of the inhibitor drug. If the ratio of [II/Ki is <0.1, the
likelihood of a drug interaction is remote, if it falls between 0.1
and 1 a drug interaction may be possible and if the ratio is >1
a drug interaction is likely.

Since the estimated Ki value is an integral part of this
prediction, the accuracy of Ki must be considered.
Nonspecific binding of cannabidiol, including binding to
microsomal proteins and labware may occur with in vitro
studies resulting in overestimating Ki and 1Csq and underesti-
mating the true interaction potential [24]. Recent in vitro stu-
dies with cannabinoids have used corrected values in models

Table 1. Ki values reported from in vitro studies using HLMs or R for different CYP450

enzymes.

Enzyme Test system Ki (uM) Reference

CYP1 HLMs 1.75 [17]

CYP1A1 R 0.155 [17]

CYP1A2 R 2.69 [17]

CYP1B1 R 3.63 [17]

CYP2A6 R 55.0 [18]

CYP2B6 R 0.69 [18]

CYP2D6 HLMs 242 [19]
(Dextromethorphan)

CYP2D6 R 2.69 [19]
(Dextromethorphan)

CYP2D6 R 1.16 [19]
(AMMCQ)

CYP2C9 HLMs 3.46-5.60 [20]
(Warfarin)

CYP2C9 HLMs 9.88 [20]
(Diclofenac)

CYP2C9 R 0.954 [20]
(Warfarin)

CYP2C9 R 2.31 [20]
(Diclofenac)

CYP3A4/5 HLMs 6.14 [21]

CYP3A4 R 1.00 [21]

CYP3A5 R 0.195 [21]

CYP3A7 R 12.3 [21]

CYP2C19 R 0.793 [22]

AMMC = 3-[2-(N,N-Diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin;

HLMs = human liver microsomes; Ki = inhibitory constant; R = recombinant enzymes.
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Table 2. A summary of the mean values for ICsq, and K;, (R,HLMs) and type of inhibition

observed by Nasrin et al.

Enzyme Mean 1Csg,, (uM) Mean K;, Type of inhibition
CYP1A2 0.13,0.67 0.12,0.21 M
CYP3A4 0.19,0.45 0.093,0.22 C

CYP2B6 0.13,0.26 0.068,0.22 C

CYP2C9 0.22,0.48 0.093,0.19 C
CYP2C19 0.16,0.36 0.050,0.092 /M
CYP2D6 0.19,0.52 0.074,0.31 C

CYP2E1 0.037,0.14 0.021,0.058 C

C = competitive inhibition; M = mixed inhibition; HLMs = human liver microsomes; ICs,,
= half maximal inhibitory concentration corrected for unbound fraction; K;, = inhibitory
constant corrected for unbound fraction; R = recombinant enzymes.

to extrapolate in vitro data into in vivo predictions of potential
drug-drug interactions for cannabinoids.

A study by Nasrin et al. 2021 [25] calculated binding cor-
rected 1Csp,, and K;, values for cannabidiol using pooled adult
HLMs. The mean values observed for the different CYP
enzymes (which are considerably lower than those reported
in Table 1) are summarized in Table 2.

Nasrin et al. 2021 [25] used basic mechanistic static model-
ing to predict the potential for in vivo drug-drug interactions.
Modeling predicted a strong potential for pharmacokinetic
interactions with cannabidiol (both oral and inhaled) with
CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and
CYP2E1. In the modeling, the authors used a Cmax of
703 nM for an oral dose of 800 mg and for 20 mg inhaled
cannabidiol, the Cmax was 10.3 nM [25].

Bansal et al. conducted two in vitro human liver microsome
studies to investigate the likelihood of cannabidiol and its
metabolites precipitating pharmacokinetic drug-drug interac-
tions by inhibition of CYP enzymes. Recognizing the potential
for overestimating 1Cso and Ki and underestimating inhibition
potency, due to nonspecific binding, these studies calculated
ICso,, Vvalues. The ICsq, values reported in the first study are
shown in Table 3.

Various forms of mechanistic static models calculating
AUCR (ratio of the area under the plasma probe drug concen-
tration in the presence or absence of the inhibitor compound)
were used in these studies. The initial study observed that
cannabidiol reversibly inhibited CYP1A2, CYP2C9, CYP2C19,
CYP2D6, and CYP3A and was a time-dependent inhibitor
(TDI) of CYP1A2, CYP2C19, and CYP3A with the mechanism
for TDI unknown. Based on modeling, the initial study pre-
dicted strong drug interactions with CYP2C9, CYP2C19, and
CYP3A and moderate drug interactions with CYP1A2 and
CYP2D6. The authors acknowledged that these predictions
were based on static Cmax concentrations after oral dosing,
and that use of physiologically based pharmacokinetic model-
ing may lead to improved predictions of interactions [24].

The second study investigated the potential for drug-drug
interactions of cannabidiol and its metabolites with CYP2A6,
CYP2B6, and CYP2C8. The authors concluded that cannabidiol
produced potent reversible inhibition of CYP2B6 and CYP2CS8,
while inhibition of CYP2A6 was weak and reversible. TDI of
CYP2A6, CYP2B6 or CYP2C8 was not observed for cannabidiol
or its metabolites. Observed predictions of the potential for
drug—-drug interactions varied depending on the models used.
The outcomes from models ranged from modest to no

pharmacokinetic interactions between cannabidiol (at oral
doses greater than 700 mg) and drugs metabolized by
CYP2B6 or CYP2C8 [26].

Many commonly prescribed drugs are metabolized by the
CYP enzymes and may be candidates for drug-drug interac-
tions with cannabidiol. For example, CYP3A4 is involved in the
metabolism of about a quarter of all commonly used drugs
and inhibition of CYP3A4 may increase serum concentrations
of macrolides, calcium channel blockers, benzodiazepines,
cyclosporine, sildafenil, antihistamines, haloperidol, antiretro-
virals, and some statins. CYP2D6 metabolizes many antide-
pressants and inhibition has the potential to increase serum
concentrations of selective serotonin reuptake inhibitors, tri-
cyclic antidepressants, antipsychotics, beta-blockers, and
opioids such as codeine and oxycodone [27]. Some standard
drug interaction checking platforms do not distinguish
between minor and major CYP metabolic pathways and clin-
ical significance data is not readily available for many potential
cannabidiol interactions.

3.3.2. UGT enzyme interactions

The UGT family of enzymes catalyze glucuronic acid conjuga-
tion and are important in the metabolism of many small
molecule drugs and endogenous compounds. Impaired glu-
curonidation of drugs via inhibition due to drug interactions
may lead to slower elimination of drugs and accumulation of
toxic metabolites. Limited data are available on the effect of
cannabidiol on these enzymes. When studied in vitro using
HLMs, cannabidiol was observed to inhibit ethanol glucuroni-
dation, which is mainly catalyzed by UGT1A9 and UGT2B7. The
Ki value reported was 3.1 mg/L [28].

A recent in vitro study investigated the inhibitory potential
of cannabidiol using microsomes isolated from HEK293 cells
which overexpressed individual recombinant UGTs and in
microsomes from human liver and kidney specimen

Table 3. Mean ICs,,, values reported for different CYP450 enzymes from in vitro
studies using pooled HLMs.

Enzyme Mean 1Csg,, (uM)
CYP1A2 0.45
CYP2C9 0.17
CYP2C19 0.30
CYP2D6 0.95
CYP3A 0.38

HLMs = human liver microsomes; ICs,, = half maximal inhibitory concentration
corrected for unbound fraction.



microsomes. Strong inhibition of UGTs 1A6, 1A9, 2B4 and 2B7
by cannabidiol was observed while inhibition of UGT2B17 was
reported to be marginal. Mean unbound ICsy values deter-
mined with different substrates and in vitro systems ranged
from 0.14 to 1.4 uM for UGT1A6, 0.22 to 2.5 uM for UGT2B4,
0.82 to 22 uM for UGT2B7, and 0.073 to 1.5 uM for UGT1A9.
The major metabolite of cannabidiol, 7-OH-CBD, did not exhi-
bit any significant inhibition against the UGTs tested. The
mean unbound ICso values observed are in a range observed
after oral administration of a 400 mg dose of cannabidiol
(0.76 uM) making it plausible for drug-drug interaction via
this pathway to occur [29].

UGT enzymes are involved in the glucuronidation of a range
of drugs and inhibition of these enzymes reduces the excretion
of substrate drugs. Since many commonly used medications
undergo glucuronidation, cannabidiol should be used with
caution in patients who are on medications that undergo glu-
curonidation and when commencing these medications.
Patients should be carefully monitored for side effects [30].

3.3.3. Drug transporter interaction

The effect of cannabidiol on the efflux transporter P-gp has
been studied in vitro using different cell lines and differing
results have been observed. Cannabidiol did not inhibit
P-gp with human T lymphoblastoid leukemia or in mouse
fibroblast MDR1 transfected cell lines [31]. However, can-
nabidiol inhibited P-gp mediated transport in a study
using Caco-2 and LLC-PK1/MDR cells. While the 1Csg
observed in this study (8.44 uM) was much higher than
plasma cannabidiol concentrations commonly observed,
the authors noted that sufficiently high concentrations
may be achieved in the gastrointestinal tract when canna-
bidiol is administered orally to influence bioavailability
[32]. A review on the safety and side effects of cannabidiol
also noted that very high oral doses would be required to
achieve plasma cannabidiol concentrations in the range of
ICso values reported in in vitro studies and suggested that
the cannabidiol effect on transporters should be investi-
gated in the concentration range of 0.03-0.06 uM [33].

The MRP1 transporter, which is implicated in phase Il
metabolism, was observed in vitro to be inhibited by can-
nabidiol [34]. Data submitted to the U.S. Food & Drug
Administration (FDA) by the sponsor of cannabidiol oral
solution (Epidiolex®) states that cannabidiol was not found
to be an inhibitor of a range of other hepatic and renal
drug transporters [35].

In vitro studies have shown that the inactive metabolite of
cannabidiol, 7-carboxy-cannabidiol (7-COOH-CBD), is
a substrate of P-gp and also an inhibitor of both BCRP, and
the bile salt export pump (BSEP). Drugs that are substrates of
these transporters may potentially be affected by this meta-
bolite [30].

Further research is needed to confirm the clinical presence
and relevance of transporter interactions. Until this research is
undertaken, caution is recommended when cannabidiol is co-
administered with drugs that are P-gp substrates, including
narrow therapeutic index (NTI) drugs, such as digoxin and
drugs that are BCRP and BSEP substrates.
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3.3.4. Carboxylesterase inhibition

The esterase, carboxylesterase 1 (CES1), is expressed in the
human liver and catalyzes the hydrolysis of a range of drugs
and endogenous compounds. An in vitro study using the S9
fraction of human embryonic kidney 293 cells expressing CES1
observed potent inhibition of CES1 by cannabidiol. The
mechanism of inhibition was reversible and observed to be
a mixed competitive, noncompetitive inhibition with a mean
Ki value of 0.974 uM [36]. In an in vitro study investigating the
effect of cannabidiol on the two-step hydrolysis of heroin,
cannabidiol was observed to be a potent in vitro inhibitor of
hydrolysis. The 1Cso values for the two steps of heroin hydro-
lysis were 14.7 and 12.1 uM, respectively. However, when the
ratio of an estimated unbound cannabidiol Cmax to ICs, was
calculated, the value was below the possible in-vivo drug-
drug interaction FDA and European Medicines Agency cutoff
value of 0.02. Based on this, the authors suggested that the
observed in vitro inhibition was unlikely to be clinically rele-
vant [37]. In a physiologically-based pharmacokinetic model,
simultaneous administration of single-dose methylphenidate
and cannabidiol (2.5-10 mg/kg) did not result in a significant
interaction. In contrast, a mild interaction was reported to be
likely with multiple cannabidiol doses (10 mg/kg twice
daily) [38].

4. Preclinical (animal studies) and clinical
observations

While there is a paucity of clinical trials in humans, there are
extensive preclinical studies in animal models. The following
section presents data obtained from studies in animal models
and clinical observations. Where data are available from pre-
clinical and clinical studies in each of the classes of drugs, the
data will be compared and discussed. See Tables 4 and 5 for
a brief reference summary of cannabidiol drug interactions
based on human data.

4.1. Anticonvulsants

4.1.1. Animal studies

Cannabidiol is administered to patients with rare types of
epilepsy who are also receiving other anticonvulsant medica-
tions. Using a mouse model of epilepsy, cannabidiol at a dose
of 100 mg/kg was observed to enhance the effect and
decrease the median effective dose (EDso) of topiramate,
oxcarbazepine, pregabalin, tiagabine, and gabapentin. The
anticonvulsant effectiveness of lamotrigine or lacosamide
was not changed and the anticonvulsant effect of levetirace-
tam was reduced [46]. Cannabidiol 100 mg/kg was associated
with an increase in serum concentration with no change in
brain concentration of topiramate and oxcarbazepine.
Increases in gabapentin in both serum and brain were seen,
while increased concentration in brain but not plasma of
tiagabine and lacosamide were demonstrated.
Concentrations of lamotrigine, pregabalin, and levetiracetam
in brain and serum were unchanged. Topiramate increased
brain and serum cannabidiol concentrations. Oxcarbazepine
and pregabalin increased brain but not serum cannabidiol.
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These data suggest the interactions are in part a result of
pharmacokinetic interactions. However, these results should
be interpreted with caution as a single concentration rather
than an AUC was reported, and not all the changes in anti-
seizure medication (ASM) efficacy are explained [46].

In mice given cannabidiol 12 mg/kg to give a plasma con-
centration of 411 + 87 ng/mL and co-administered clobazam,
significant interactions are seen. Plasma clobazam AUC
increased sixfold and brain exposure to clobazam was similarly
increased. AUC of N-desmethylclobazam (nCLB) was increased,
and time to maximum plasma concentration (Tmax) delayed
[47]. This study also demonstrated that clobazam and canna-
bidiol, positive allosteric modulators of the GABA, receptor,
augmented GABA mediated current but were not synergistic
in this [47].

In rats administered cannabidiol, single-dose cannabidiol
was associated with increased carbamazepine AUC and
decreased AUC of the metabolite carbamazepine-10,11-
epoxide. In contrast, repeated cannabidiol administration
daily for 2 weeks resulted in a reduced AUC. While the single
cannabidiol dose effect likely occurs through CYP3A inhibition,
the mechanism of interaction in the prolonged cannabidiol
dosing is unclear [48].

4.1.2. Clinical studies

Cannabidiol may be used in combination with other ASM in
either treating some forms of epilepsy or where ASM are being
used as mood stabilizers or to treat neuropathic pain.

In an open-label safety study of patients with treatment-
resistant epilepsy, following cannabidiol administration in
combination with clobazam, increased active metabolite
nCLB concentrations were observed [42]. Similar observations
were reported in a phase Il trial [40]. The interaction is thought
to be due to CYP2C19 inhibition [41]. Gaston et al. 2017 [42]
also reported that with higher nCLB concentrations, there
were more frequent reports of sedation in adult participants
[42]. In the setting of Dravet Syndrome and Lennox Gastaut
Syndrome, cannabidiol has been reported to have antiseizure
activity independent of other ASM. Pharmacokinetic and phar-
macodynamic interactions between cannabidiol and clobazam
may result in increased antiseizure effect and potential
adverse effects [49].

In the aforementioned study by Gaston et al. 2017 [42],
elevated rufinamide, topiramate and zonisamide concentra-
tions, within normal therapeutic ranges, were reported.
A dose dependent increase in zonisamide concentration was
observed in adults but not pediatric study participants [42].

In healthy volunteers, cannabidiol had a very modest
impact on clobazam AUC and Cmax and a greater impact on
nCLB AUC and Cmax. Stiripentol AUC was increased slightly
with cannabidiol co-administration. Cannabidiol had no effect
on these pharmacokinetic parameters of valproate. Valproate
had no impact on cannabidiol or 7-OH-CBD metabolite
kinetics, although a slight increase in 7-COOH-CBD was
noted. Clobazam increased and stiripentol decreased AUC
and Cmax of some metabolites of cannabidiol but had no
impact on cannabidiol [43]. Elevated liver transaminases have
been reported in open-label and randomized trials and

thrombocytopenia in a pediatric chart review with the combi-
nation of cannabidiol and valproate [42,44,45,50].

There is case series data of increased plasma brivaracetam
concentrations occurring during co-administration with can-
nabidiol [39].

Clinical and therapeutic drug monitoring should be imple-
mented, where possible, with concurrent ASM and cannabi-
diol use.

4.2. Antidepressants

4.2.1. Animal studies

In a mouse model of depression, doses of cannabidiol (7 mg/
kg), fluoxetine (7 mg/kg), and desipramine (2.5 mg/kg) had no
antidepressant effect when given alone. With a dose increase
of each individual agent to cannabidiol 10 mg/kg, fluoxetine
10 mg/kg or desipramine 5 mg/kg, an antidepressant effect
was seen. When given together, a significant effect was seen
with the combination of fluoxetine 7 mg/kg and cannabidiol
7 mg/kg, but not desipramine 2.5 mg/kg and cannabidiol
7 mg/kg. The effect of cannabidiol alone at 10 mg/kg was
blocked by inhibition of serotonin synthesis, indicating canna-
bidiol’s antidepressant effect is mediated through serotoniner-
gic mechanisms [51]. In vitro studies suggest fluoxetine
metabolism is impacted weakly by cannabidiol [52]. Taken
together, these data indicate that the antidepressant effect
of combined subtherapeutic doses of cannabidiol and fluox-
etine is pharmacodynamic rather than pharmacokinetic in
nature. In contrast, metabolism of citalopram and escitalo-
pram is inhibited by cannabidiol [52].

4.2.2. Human studies

A recent case report in a patient with a homozygous
CYP2D6*4 genotype conferring null activity highlighted the
potential impact of drug—gene interactions with cannabidiol
(18 mg twice daily) and fluoxetine [53].

In an open-label trial, a modest increase in a single steady
state concentration of citalopram was observed at week 8
compared to baseline with the combination of citalopram or
escitalopram with cannabidiol. The interaction was attributed
to cannabidiol inhibition of CYP3A4 and CYP2C19 [52].

4.3. Opioids

4.3.1. Animal studies
In mice, an antinociceptive effect of morphine 0.32-10 mg/kg
or cannabidiol 10-40 mg/kg was demonstrated in the acetic
acid-stimulated stretching model of pain. The combination of
cannabidiol and morphine had a synergistic effect in this
model. However, in the other two anti-nociceptive models
tested (acetic acid-decreased operant responding for palatable
food and hot-plate thermal nociception), cannabidiol reduced
morphine responses. These complex responses suggest the
interaction is pharmacodynamic rather than pharmacoki-
netic [54].

Heroin is metabolized by two hydrolytic steps, first to
6-Mono-acetyl morphine (6-MAM) and then to morphine. In
vitro, the hydrolysis of heroin and 6-MAM is inhibited by



cannabidiol, with ICsq values of 14.7 and 12.1 uM, respectively.
This was associated with increased behavioral responses eli-
cited by these drugs [37]. In a rodent model where mice were
pre-treated with cannabidiol at doses up to 120 mg/kg, no
alteration in brain or blood concentrations of morphine,
methadone or methylenedioxyphenyl-methamphetamine
was seen with cannabidiol pre-treatment [55]. This is in con-
trast to the report described below, and reinforces the need
for caution when extrapolating animal data to humans.

4.3.2. Human studies

In a pediatric case report involving concomitant methadone and
cannabidiol, elevated methadone concentrations, somnolence,
and fatigue were observed [56]. As a number of CYP450 enzymes
are postulated to contribute to methadone metabolism, canna-
bidiol inhibition of CYP2B6, CYP3A4, CYP2C19, and to a lesser
extent CYP2C9 may be involved [57,58]. A pharmacodynamic
interaction may also contribute as somnolence and fatigue are
common adverse effects associated with cannabidiol [11].

In healthy volunteers receiving either placebo, a single
dose of 400 mg cannabidiol or 800 mg cannabidiol and then
IV fentanyl (0.5 pg/kg and 1.0 pg/kg), no increase in adverse
events or change in physiological parameters was seen with
cannabidiol. AUC of cannabidiol was not affected by fentanyl.
No plasma fentanyl was detected in any subject [59]. In
a recent systematic review, no opioid sparing effects of can-
nabidiol were identified in higher quality studies [60].

4.4. Psychotropic drugs

4.4.1. Animal studies

Pre-treating mice with cannabidiol at doses up to 120 mg/kg
resulted in increased brain and blood concentrations of tetra-
hydrocannabinol, cocaine, and phencyclidine [55].

4.4.2. Human studies

In a case report involving cannabidiol and lithium, an elevated
lithium concentration and symptoms consistent with lithium
toxicity were observed [61]. The AUC and half-life of caffeine
are increased in healthy volunteers administered cannabidiol
750 mg twice daily to a steady state [62].

4.5. Other drug classes

4.5.1. Anticoagulant and antiplatelet agents

In patients taking warfarin and purified cannabidiol or pro-
ducts likely containing cannabidiol and tetrahydrocannabinol,
there have been case reports of increased international nor-
malized ratio (INR) and a clinically significant drug interaction
via CYP2C9 inhibition is predicted [63-65]. The notion of
a dose threshold for drug interactions was highlighted in
a recent case report, where there was minimal impact on INR
with concomitant warfarin and oromucosal medicinal canna-
bis. The authors suggested that the serum concentration of
cannabinoids was less than what would be required to exert
an inhibitory effect on CYP enzymes [66]. There is a theoretical
risk of increased bleeding when antiplatelet and anticoagulant
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drugs are combined with cannabidiol, based on cannabidiol
inhibition of platelet aggregation in vitro [67].

4.5.2. Anti-cancer drugs

Patients with cancer are a population where it is likely to see
use of cannabinoids in combination with anti-cancer treat-
ments. Few reports are available on whether drug interactions
occur when cannabidiol is combined with different che-
motherapy agents. One case report investigated the use of
oral formulation of cannabidiol (also containing a small per-
centage of tetrahydrocannabinol) at a dosing of 40 mg/day in
patient taking tamoxifen which undergoes metabolism by
CYP3A4 and CYP2D6 to the active metabolite endoxifen.
When tamoxifen and metabolite concentrations were mea-
sured, the results suggested probable inhibition of enzymes
by cannabidiol and highlighted the need to fully investigate
this possible interaction [68].

4.5.3. Anti-fungal drugs

The effect of CYP3A4 inhibition on cannabidiol kinetics was inves-
tigated in rats administered ketoconazole. The AUC for lower dose
cannabidiol was increased by ketoconazole, but not the AUC for
higher dose suggesting saturable metabolism. In this study, can-
nabidiol at higher doses of 10 and 50 mg/kg but not 1 mg/kg
inhibited CYP3A4 demonstrated with the erythromycin breath
test. Cmax corresponding to the 1, 10 and 50 mg/kg cannabidiol
doses were 0.12 uM, 1.23 uM and 11.4 pM, respectively [69].

4.5.4. Immunosuppressant drugs

Elevated and variable everolimus concentrations were reported
with combined use with cannabidiol in a pediatric case report,
possibly via a CYP3A4 interaction [70]. In a retrospective review,
in 19 of 25 patients taking cannabidiol, elevated mTOR inhibitor
(everolimus or sirolimus) concentrations were reported.
Confounding effects of drug interactions with coadministered
drugs cannot be excluded [71]. There have been case reports
and/or series where altered tacrolimus concentrations have
been observed with concurrent use of cannabidiol only or pre-
dominant products [72,73]. However, there are also case reports
with tetrahydrocannabinol containing and predominant pro-
ducts [74,75]. Although the interaction has been proposed to
occur via CYP3A and/or P-gp [75], it is uncertain how much of
a role intra-individual variability plays in these published cases.
Nonetheless, concentration monitoring and dose adjustments
(as required) are recommended. Cannabidiol may also exert
independent effects on the immune system.

5. Discussion

There has been a surge in public interest and research into
using cannabidiol as a medicine. Cannabidiol is one of the
two major phytocannabinoids in cannabis. Its pharmacody-
namic profile at both cannabinoid and non-cannabinoid
receptors is different to that of the other major cannabinoid,
tetrahydrocannabinol, although they are both lipids and
require metabolism for excretion [76]. Cannabidiol has
been used to treat many different clinical conditions, includ-
ing rare types of epilepsy, managing pain, anxiety, and sleep
disorders [77]. Since cannabidiol is commonly added to
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existing drug regimens, interactions between cannabidiol
and other co-administered drugs may occur. The extent of
interaction between drugs depends on the plasma drug
concentrations of each drug and the systemic exposure
measured by the AUC. Plasma drug concentrations and
AUC are determined by the dose, dosing regimen, formula-
tion, route of administration, and drug pharmacokinetics.
Additional variability may be conferred by pharmacoge-
nomic diversity.

Daily cannabidiol doses vary from a few milligrams to grams
per day, depending on the clinical indication. A systematic
review of clinical studies reported dosing ranging from <1 mg/
kg/day to 50 mg/kg/day [78]. Some clinical studies observed
biphasic and inverted U-shaped dose-response curves, influen-
cing the dose administered [79,80]. With such an extensive
range of dosing, stratifying dosing into low, medium or high
dosing may assist in assessing the potential for drug-drug
interactions. A recent review of cannabidiol classified a low
dose as <1 mg/kg/day; a medium dose was 1-10 mg/kg/day,
and a high dose was 10-50 mg/kg/day [81]. A similar dose
stratification has been described in the literature [24].

In some countries, cannabidiol is available to consumers as
over the counter products (OTC) or food supplements, and the
actual amount of cannabidiol ingested by a consumer is diffi-
cult to ascertain. Studies analyzing the contents of a range of
OTC cannabidiol products sold online or available in the
United States of America and Europe reported the actual
content of cannabidiol might differ substantially from the
content stated on the product label, in which other cannabi-
noids, including tetrahydrocannabinol, other pharmacologi-
cally active substances and contaminants such as pesticides
and heavy metals may also be present [82,83]. Contaminants
and other substances may influence the pharmacological
effects, side effects, toxicity, and drug interactions [84].

Predicting pharmacokinetic drug interactions is relatively
straightforward, but quantifying the extent and clinical rele-
vance can be complicated. Adding to this is the lack of cer-
tainty around dose and response, as receptor response is
different at different concentrations, e.g. inverse agonist at
low dose then antagonist at higher doses. It also affects
other G-protein-coupled receptors at different concentrations
[85]. This complex and evolving pharmacology makes phar-
macodynamic interactions likely but difficult to predict.

Clinical and therapeutic drug monitoring (where possible)
is encouraged, particularly with NTI drugs. Due to the poten-
tial for drug interactions with OTC and prescribed cannabidiol,
screening questions to ascertain use need to be integrated as
part of standard patient care. Comprehensive models of speci-
alty pharmacist and clinical pharmacologist involvement in the
care of patients taking cannabidiol can prospectively identify
and manage potential drug interactions, through clinician
prescribing guidance, patient counseling, dose adjustments,
deprescribing and therapeutic drug monitoring [86-88].

Data on clinically relevant drug interactions with cannabi-
diol are scarce and data usually collected during preclinical,
and phase | to Ill studies are missing for many cannabidiol
medicines. Frameworks specific to cannabinoids and standard
regulatory guidance for drug interaction studies are available

[89,90]. With so many different cannabidiol products and dif-
ferences in regulation of products, few real-world pharmacov-
igilance data are available to provide further guidance.
Further, it highlights the importance of establishing well-
designed pharmacovigilance strategies to obtain real-world
data to inform clinicians and consumers and to guide the
development of formal clinical studies [91].

6. Conclusion

Prediction of cannabidiol pharmacokinetic drug interactions
and interim clinical guidance is currently based on existing
data and basic principles. Although existing cannabidiol drug
interaction data, including dose ranges, provide clues for
further research, there are inherent flaws in the extrapolations
of this data. There is a great need for high-quality research
into cannabinoid drug interactions to facilitate a greater
understanding of clinically relevant cannabidiol drug interac-
tions. As further research emerges, it may become apparent
that there is a dose range at which clinically relevant canna-
bidiol drug interactions are likely to occur.

7. Expert opinion

The widespread availability and use of non-prescribed and
prescribed cannabidiol increase the likelihood that it may be
taken with other medications. Available data on cannabidiol
drug interactions is sparse and further high-quality research is
needed. Health professional awareness of potential drug inter-
actions with cannabidiol is critical for patient safety. Many of
the drug interactions highlighted in this review, necessitate
increased clinical, laboratory and/or therapeutic drug monitor-
ing. In this article, published evidence related to drug interac-
tions and dose ranges is explored to better understand clinical
relevance and how this research may be translated into real-
world clinical practice settings. Dose adjustments are likely to
be necessary with many of the reported interactions. The
review of drug interactions in this article has informed
a suite of state-wide cannabis medicine prescribing guidance
documents. The prescribing guidance documents have been
adopted more broadly and are recommended by the
Therapeutic Goods Administration (National Australian medi-
cine regulator) as an educational resource for health
professionals.

High-quality drug interaction studies are required to deter-
mine whether there is a dose threshold with cannabis medi-
cine drug interactions. There are indicators that dose is
important in the prediction of potential drug interactions
with cannabidiol and this has important implications as
lower doses of cannabidiol are readily available over the
counter in many jurisdictions. The limitations of current pub-
lished evidence are acknowledged, as are any extrapolations
made from them. Rigorous drug interaction studies exploring
the dose relationship in cannabidiol drug interactions are
needed to move knowledge in this area forward.

Over time, a wider range of cannabidiol drug interactions
and the doses at which they occur will become known. There
is potential to improve patient safety outcomes by



undertaking this research. As health professionals, ongoing
pharmacovigilance is important and therefore advising
a definitive end-point would be counterintuitive to best prac-
tice. The review provides interim clinical guidance and high-
lights areas where research is required to further develop our
understanding of clinically relevant cannabidiol drug
interactions.

In the cannabis medicine research landscape, there are
a plethora of evidence gaps. As health professionals are navi-
gating best practices with a molecule that has not undergone
typical drug research processes, researchers are retrofitting
evidence as it becomes available. Due to a large number of
evidence voids in the study of cannabis medicines, there is
a multitude of promising areas in the field, including drug
interactions requiring progression.

The extent of clinical guidelines that can be provided to
health professionals is determined by the quantity and quality
of published data available. Knowledge in this area is likely to
build over time, and this will influence clinical guidance and
translation into clinical practice settings in the next 5 to 10
years. Knowledge gains and real-world translation into clinical
practice have the potential of improving patient safety
outcomes.
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